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Abstract

Pattern recognition methods and hidden Markov models can be effective tools for on-
line health monitoring of communications systems. Previous work has assumed that
the states in the system model are exhaustive. This can be a significant drawback
in real-world fault monitoring applications where it is difhcult  if not impossible to
model all the possible fault states of the system in advance. In this paper a method
is described for extending the Markov monitoring approach to allow for unknown or
novel states which can not be accounted for when the model is being designed, The
method is described and evaluated on data from one of the Jet Propulsion Labo-
ratory’s Deep Space Network antennas. The experimental results indicate that the
method is both practical and effective, allowing both discrimination between known
states and detection of previously unknown fault conditions.



1 Motivation
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Online monitoring of complex communication systems and networks for the purposes

of automated fault detection is a topic of considerable practical importance. For ex-

ample, the Deep Space Network (DSN) (operated by the Jet Propulsion Laboratory

for the National Aeronautics and Space Administration (NASA)) consists of three

ground-based antenna sites in Australia, Spain, and California. Each site contains

a single 70m antenna and several smaller 26m and 34m antennas. These antennas

provide the capability for 24-hour communications with various unmanned interplan-

etary robotic explorers such as the Pioneer, the Voyager, and Magellan spacecraft [1].

Fault detection and isolation is often a complicated and lengthy process due to the

fact that it can be difficult to establish the root cause of a problem in the communi-

cations chain. As an example, a problem with the radio receiver dropping carrier lock

could be caused by a variety of factors such as problems with the spacecraft itself,

external environmental influences such as weather, irregularities in the antenna point-

ing system, problems with the receiver hardware, incorrectly set tracking parameters,

and so forth.

Loss of a spacecraft signal during a planetary encounter may result in the irretriev-

able loss of science data. Hence, there is considerable motivation to be able to quickly

detect, isolate, and repair a fault. The same scenario applies to many commercial and

military communication systems: rapid detection of failures is essential as comnmni-

cations equipment becomes more complex and various applications (such as medical

imaging and electronic financial transactions) have come to rely on communications

as an essential component of their day-to-day business.

In this paper, the general problem of real-time monitoring of a dynamic system

is examined, with particular emphasis on the problem of detecting anomalous states

which have not been modelled a priori. There is an implicit assumption that the

system being monitored is not amenable to standard linear modelling so that the

standard linear

literature [2, 3,

world systems.

monitored is in

monitoring the

systems approach to fault detection described in the control theory

4] is not applicable — this is frequently the case with complex real-

It will help the reader to imagine that the particular system being

fact a sub-system of an overall larger system: the primary purpose of

“subsystem” is to quickly determine if it in particular is the cause of
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the problem, given that an overall anomaly has been detected. For example, we will

later focus on the problem of health monitoring the pointing subsystem of a 34m DSN

antenna — the overall larger system could be considered to be the complete ground

station (antenna/microwave/recei ver/decoder) or indeed the entire communications

link between the spacecraft and JPL.

2 The Hidden Markov Model Method for Online
Monitoring

2.1 Basic Notation and Assumptions

Consider that we are monitoring a dynamic system for which observable measure-

ments are available at discrete time intervals. Denote the observable d-dimensional

random variable as Y where y 6 7?d is a particular realisation of Y, Without loss

of generality assume that the time interval is 1 so that at time i we have seen a

sequence of such measurements, @t = {~(t),~(t – 1),. . . . Y(O)}, where @~ represents

all the observed data up to time i, and y(t) is the observed data at time t.—
Let 0 be a discrete random variable taking values in the set {wl, . . . . w~ }. Assume

that the system at any time i is in one and only one of the m states, WI, , , , , Wm. For

fault diagnosis applications WI is typically chosen to be the normal operating state

of the system and the other states represent various possible fault conditions. The

assumption that the states are mutually exclusive is equivalent to the “single-fault”

assumption, namely that multiple faults do not occur simultaneously — this is a

reasonable assumption in practice when fault conditions are relatively rare. The

second assumption, that the set of fault states is exhaustive, is much more restrictive

and rarely likely to be true in practice: we will return to this aspect of the problem

later in the paper, but for the present we will assume that exhaustivity holds.

Now consider the observable Y in relation to the states. We will assume that the

conditional probability of Y given a particular state is stationary, i.e.,

For shorthand throughout the paper we will replace “fI(t) = Wi” by w: and “Y(t) = y“

by y(i).  Since the state-observable relation is not time-dependent, explicit reference—
to time t in this context will be omitted,
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The observable ~ can be considered to be a probabilistic function of the underlying

states, As an example, consider the case where the dynamic system being observed

can be modelled in closed form, perhaps by a set of linear equations, In this case,

the observable y could be a vector of residual prediction errors between the predicted—
system outputs at time t and the actual system outputs at time i. Thus, y is a—
characteristic indicator of whether the system is remaining with its normal state or

has switched to another state (one which is not well approximated by the closed form

system model). We will examine in more detail later specific examples of observable

and underlying states.

At this point we will assume that the prior probabilities of the states p(~i)  are

known and that either (a) the conditional probabilities of the observable given the

states p(yl~i)  are known, or equivalently, (b) that the conditional probabilities of the

states given the observable p(~i [ y) are known. Since the states have been assumed—
to be mutually exclusive and exhaustive, the equivalence of knowing either (a) or (b)

follows from Bayes’ rule:

P(3Jlwi)P(wi)P(Ld: II) =

Dy=l P(~lwj )P(wj ) ‘
Section 2.3.2 will discuss how these conditional

practice.

Finally we will assume

first-order Markov process

the system being in state .

I<i <m.

distributions may be estimated in

that the state variable O(t) is a stationary discrete-time

with transition matrix A. Entry aij is the probability of

i at time i Riven that the system was in state i at time

i – 1, i.e.,

a ij t – 1
= p(W~  IW1 )! VI* ]<i, j<m. (1)

Q(t)  need not necessarily be assumed to be a first-order Markov process: the algo-

rithms and methodology described in the paper can be readily extended to higher-

order and semi- Markov processes.

What we have described so far is a first-order discrete-time hidden Markov model

— a diagrammatic representation is shown in Figure 1. The hidden aspect of the

model reflects the fact that the states are not directly measurable themselves, but are

indirectly observable via the y’s which are a probabilistic function of the underlying—
Markov process. In general, the parameters of a specific model are often referred to

generically as ~ = {P(wI ), . . . ,p(wn), p(ylq ), . . . . ~(~l~m),  A}.
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2.2 Inference of the State Probabilities given the Observed
Data

Given a particular hidden Markov model with m states and fixed parameters A, one

can use this model to infer the posterior probabilities of each of the hidden states at

time t, given the observed data @~ = {~(i),~(i – 1), . . . ,1(O)} up to and including

time t. The application might be an online system where we are observing the data in

real-time and wish to generate an alarm if p(w~ [Qt) <0.5 (for example). The solution

to this problem follows directly from the assumptions in the previous sections and an

efficient algorithm for recursively computing these state estimates has been developed

in the speech recognition literature (the “forward algorithm” — see Rabiner  [5] for a

tutorial

where

and,

(3)

is just a normalizing constant to ensure that the state probability estimates at time

t sum to 1. Note that these equations are usually written in terms of a variables in

the speech recognition literature.

In a similar manner, at time i, one can calculate the probability of state j at time

t – k given only the data which has occurred between time t –

as:

rf-~ = {lJ(t),lJ(t  – 1),..., g(t –k+ l)}.

Analogous to the previous recursion, but now conditioning on

after time t – k one has

k and time t, defined

data which occurred

P(d-klr’-k) = +~aijp(oj-k+llrt-k+l)p(Y(i-k+l)loj-k+l)

where

4
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and L~ is a normalisation constant. This is known as the ‘backward recursion algo-

rithm” in speech-related work and is often written in terms of intermediate variables

known as /3’s.

Thus, for a state which occurred in the past at time t – k, one can calculate the

probability of that state given the data which occurred up to time t – k, and after t – k

to time t, by combining the p(u~-& I@’-h) and p(~$-~ll’’-~) in the following manner

(see Rabiner  [5] for proofs):

p(w~-klat)  =
+~-k’oi-k)f’(+k’r’-’)

~+-k’o’)p(w’-k’r’-k)’
l<k <t, I<j <m. (5)

Equations (2), (4), and (5) are the basic estimation equations for online monitoring.

2.3 HMM’s applied to online monitoring

Given the above monitoring equations it remains to determine the Markov model

structure and parameters in order to implement the method for a particular problem.

2.3 .1  HMM trans i t ion  matr ix

The key point in the Markov monitoring approach (previously introduced in [6] and

[7]) is that the transition probabilities are not estimated from the data (as in speech

modeling), but rather are chosen a priori based on the long-term temporal character-

istics of the system and prior knowledge concerning the system failure modes. Note

that the use of this prior information is essential in applications of this nature in the

sense that there is often no alternative practical method by which to estimate these

probabilities. For example, in speech modelling one can use estimation algorithms

(such as the Baum-Welch algorithm) to estimate the probabilities via maximum like-

lihood methods directly from data. In online monitoring however, sequences of data

containing normal-fault transition information are not likely to be available. Hence,

prior knowledge must be used to determine the probabilities in the matrix A.

In particular, the mean time spent in the normal state WI of the model should

be equal to the mean time between failure (MTBF)  of the observed system. For a
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first-order Markov system the expected length of time I spent in state q, given that

it starts in state WI, is

n=l

1=
1 – all

=  MTBF

Hence,
1

all
‘l– MTBF”

(6)

In practice the MTBF of a particular system is typically either available from databas-

es of trouble reports or can be inferred

system).

Given all, the all terms (where 2

from reliability

~i~m)are

likelihoods of the known fault states and are subject to

design information (for a new

chosen based on the relative

the constraint that ~~z ali =

1 – all. Once again, these values are chosen based on prior knowledge about the

relative probabilities of the particular fault states in the model: this information

again may be available from a database of trouble reports or can be inferred from

first principles reliability analyses of the various fault states.

The remaining probabilities of the form aij, i + 1, are dependent on whether the

faults under consideration are transient in nature or are such that the only way to

return to the normal state is by shutting down the system and repairing the fault.

Hence, the exact nature of the HMM matrix is highly dependent on the particular

operational scenario under which the model is being used. A more detailed discussion

on the design of HMM parameters is given in [7].

2.3.2 Estimation of the Observable-State Conditional Dependencies

Earlier we showed that the problem of estimating the probability of any state at

time t based on a particular sequence of observed data (either before, or after t, or

both) can be expressed in recursive form. A central component in the recursion is

the calculation of the instantaneous observable-state conditional probability, ~(y[~j),

namely the probability of observing the data y supposing that the system is in state—
Wj at time t,
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Consider the problem of estimating p(y]wj) for a specific state ~~j. The density

function can be either chosen directly in the form of an explicit parametric model

(for example, a multi-variate Gaussian model) or could be estimated implicitly from

data via non-parametric methods such as multi-variate kernel density estimation [8,

9]. In the parametric model case, the parameters of the model can in turn either

be chosen based on prior knowledge of the system characteristics under fault and

normal conditions, or can be estimated from data. The data-based estimation proce-

dures (whether parameter fitting for a specific model or the entirely non-parametric

approach) requires that observed data is available for state wj. This is usually not

a problem for the normal state q. Indeed data can often be generated for common

fault states which are easy to emulate in hardware — later we will describe results

using this data-dependent approach.

It is worth noting that the dimensionality  of the observable variable Y can have

a distinct effect on one’s ability to estimate the functional form of the model ~(gluj).

The larger the dimensionality  the more parameters must be estimated (in the para-

metric case) and the sparser the data (in the non-parametric case), hence, the “curse

of dimensionalityn may apply. One approach to alleviating this problem is to use

Bayes’ rule and work with the posterior or discriminative probabilities of the states

given the observable. It is straightforward to show that the recursive

mation equations derived earlier (see Equation (2)) can equally well be

discriminative form:

state esti -

written in

m (7)

where

11{ is a normalization constant as before to ensure that the state probability estimates

at time t sum to unity, and p(~j) is the prior probability of state j. This is equivalent

to the previously derived recursion relation by virtue of Bayes’ rule:

P(~jlLw)  _ P(dw; )
p(uj) – p(y(t)) “

In a manner exactly analogous to that of Equations (4) and (5), one can also derive

equivalent recursion relationships for using all the observed data to time t, @~, to

estimate the probability of a state at time i – k.
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The advantage of this discriminative formalism is that estimation of the discrimi-

native probabilities tends to scale better (in terms of estimation) with dimensionality

(of the observable) and is less sensitive to particular distributional assumptions about

the observable, than the alternative approach of modelling ~(y[~i) directly. Can-—
didates for estimating such discriminative probabilities directly from data include

logisitic  discrimination [1 O] and feedforward neural network models [1 1].

3 Previous Results on Antenna Monitoring

In previous work [6, 7] we have described the application of the Markov monitoring

approach to online failure detection in antenna pointing systems which are used to

steer large 34 and 70 meter ground antennas of the DSN during tracking of various

deep-space spacecraft. Figure 2 shows a block diagram of a typical signal path from

a spacecraft back to mission control at JPL. The ground antenna is but one link in a

complex chain of communications and signal processing equipment. When a problem

occurs, it is important to quickly isolate the cause of the problem whether it is within

the ground station, in the spacecraft, or elsewhere. Because of the complexity of the

link, it is not unusual that problems can not be tracked down in real-time, resulting

in loss of telemetry data and early shut-down of the track. Furthermore, post-event

trouble-shooting may not be able to accurately recreate the exact problem symptoms,

resulting in either ignoring the problem until it becomes so severe the station cannot

track a spacecraft or misdiagnosing the problem and perhaps replacing the wrong

hardware component. The antennas are probably the single most difficult piece of

equipment to monitor accurately. Standard linear models are not particularly effective

in practice due to the presence of various non- linearities in the mechanical gears and

bearings and environmental influences such M wind gusts.

An experiment was carried out whereby hardware faults were introduced into

the pointing system of a 34 meter antenna at the Goldstone antenna complex in

a controlled manner, Separate sets of data were collected on two different days; a

training set to train the model and a test set to evaluate its performance on unseen

data. For each data set, data from a variety of sensors (motor current, tachometer,

counter torque readings sampled at 50 Hz) were recorded under known conditions. The

four known conditions corresponded to (a) normal conditions, (b) a noisy tachometer
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,(corresponding  to brush or bearing wear), (c) complete failure of a tachometer, and

(d) a short-circuit in an amplifier.

The input feature vector ~ consisted of 8 autoregressive-exogenous (ARX) coeffi-

cients and 4 standard deviation measurements, resulting in a 12 dimensional feature

space. The features were estimated from non-overlapping sequential blocks of sensor

data where each block consisted of 200 consecutive sample vectors, The ARX model

used the rate command to the system as the driving term and the motor current as

the response. A model of the form

X(t) + $jU;Z(t – i) =  ~bj’U(t  –j) + e(t)
i=] j=l

was used where p = 6, q = 2, e(t) is an additive white noise process, and z(t) and u(t)

are the motor current and rate command respectively. The feature coefficients, a i

and bjl are completely re-estimated  (via standard least-squares estimation) for each

window

Hence, from the original time series data sampled at 50 Hz, a 12-dimensional fea-

ture vector is produced every 4 seconds. This is the observable feature vector y for—
the HMM. The training data consisted of 75 such feature vectors for each of the fault

states, and 225 vectors for the normal state. We experimented with two different

methods for estimating the state-observable conditional dependencies. First we used

a 3-component Gaussian mixture model for each of the 4 states to directly model

p(~l~j)> i.e., 4 such models were used. The mixture models were fitted via a standard

iterative maximum likelihood procedure known as the EM algorithm [12], The com-

ponent densities were constrained to have diagonal covariance matrices to reduce the

number of parameters which needed to be estimated.

The second model used was a discriminative model (i.e., it modelled p(~j ly) direct-

ly), in particular, a feedforward single hidden layer neural network. The model had

12 inputs, 8 hidden units, and 4 output units (one for each class) and used non-linear

sigmoidal activation functions in both the hidden and output units (the sigmoid is of

the form ~(x)  = 1/(1 + ezp(–x))). The network weights were estimated (“trained”)

via a conjugate-gradient variant of the backpropagation  algorithm to minimise the

empirical log-likelihood [13, 14]. Under appropriate theoretical conditions it has been

shown elsewhere [15, 16] that the outputs of such a trained network converge to the

true a posterioti  probabilities as the training sample size gets large. Hence, although

9



in practice one only has a finite training sample size, and the architecture of one’s

network model may be biased, it is reasonable to interpret the network outputs as

estimates of the posterior probabilities of the states given the observable.

Results with both the mixture and neural models (without any HMM component)

are shown in Figures 3a and 3b respectively. The vertical axes represent various pos-

terior probability estimates of the states ~(~i II), while the horizontal axis represents

time in minutes, The system begins in the noisy tachometer fault state, switches to

the failed tachometer state, switches back to the normal state, switches to the ampli-

fier fault state, and finally returns to normal. Note that neither model is particularly

accurate in tracking the states and that there is a tendency to switch around between

states. This is a direct consequence of ignoring the temporal aspect of the problem,

i.e., ignoring the fact that the fault and normal states do not occur randomly in time

but tend to persist. It can also be seen in Figure 3a that the mixture model’s prob-

ability estimates tend to be near either O or 1 indicating sharp decision boundaries

and perhaps overfitting (the widths of the component Gaussian mixtures may be too

small). The neural network model on the other hand provides smoother estimates.

A simple HMM was designed to model temporal context. All states were chosen

to be equally likely and the probability of changing to a different state was assigned as

0.01, resulting in a probability of remaining in the same state of 0,97 (this corresponds

to an effective expected duration in any one state of 2 minutes for our simulated

problem). Note that in a practical situation the transition probabilities would tend

to be much closer to O or 1 in order to model realistic MTBF’s, The depth of the

backward recursion (k in equations (4) and (5)) was set to 5 time steps: empirically it

was found that setting k any greater than this resulted in no change in the estimates.

Thus there is a latency of 5 x 4 = 20 seconds before the systems produces its estimate

of the state probabilities for time t.

Figures 4a and 4b show the results obtained when this Markov transition matrix

was used to correlate the estimates from Figures 3a and 3b, the mixture model and

neural network state estimates, respectively. There is some improvement gained by

introducing the HMM for the mixture model, for example, the number of false alarms

(fault probabilities greater than 0.5 when the true state is normal) is somewhat re-

duced, However, overall the quality of the state probability estimates produced by

the mixture model are poor enough that adding temporal context (in the form of the
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HMM) does not significantly improve the overall quality of the model’s estimates.

For the neural-HMM  combination (Figure 4b), however, there is a dramatic im-

provement in performance. Apart from some mislabeling of the tachometer noise

state, the model tracks the states almost perfectly. The lack of stability evident in

Figure 3b (without the HMM) is completely removed, i.e., the introduction of appro-

priate temporal cxmtext  removes any ambiguity about the identity of the states. Of

the 4 responses plotted in Figures 3 and 4, due to its combination of low false rate

and accurate detection, the neural-HMM  combination in Figure 4b is the only one

which is accurate enough for actual operational use in DSN ground stations.

4 Detecting Unknown States

4.1 Discriminative and Generative models

The assumption that there are m known mutually exclusive and exhaustive states (or

“classes” ) of the system, o ], ..., w~ bears further investigation. The “mutually ex-

clusive” assumption is reasonable in many applications where multiple simultaneous

failures are highly unlikely. However, the exhaustive assumption is somewhat unre-

alistic. In particular, for fault detection in a complex system composed of hundreds

of thousands of components, there are a myriad of possible fault conditions which

might occur. The probability of occurrence of any single condition is very small,

nonetheless there is a significant probability that at least one of these conditions will

occur over some finite time. As an example, for the antenna application, there are a

few well-known faults (such as tachometer failures) which occur with regularity and

can be assigned specific fault states in advance; however, it is not practical to assign

states to all the other minor faults which might occur.

Hence, the question must be asked as to whether or not a discrirninant  classifier

trained to distinguish data from m states, can identify data from a different, or novel

state. The answer lies in a simple application of Bayes’ rule. If the classifier is a

pure cZiscriminant, i.e., it directly models the posterior probability p(tii[y),  then it is—
implicitly relying on the assumption of exhaustivity and cannot in principle detect

novel data. A good example of this type of classifier is a feedforward neural network

using sigmoidal activation functions. Essentially, if one gives such a trained network

new data which is far away from the training data in the feature space, it will produce
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a near certain classification decision for one of the existing classes because of the semi-

global nature of the sigmoid  model [17].

On the other hand, a generative model directly models the data in the feature space

conditioned on each class, p(y l~i), and then determines posterior class probabilities

by application of Bayes’ rule. Examples of generative classifiers include parametric

models such as Gaussian classifiers and memory-based methods such as kernel density

estimators and near neighbour  models. Generative models are by nature well suited

to online adaptation, in particular, adaptation of the structure of the model such as

the inclusion of a new class. Conversely, discriminant models are by nature difficult to

adapt online. However, there is a trade-off: because generative models typically are

doing more modelling than just searching for a decision boundary, they can be less

efficient (than discriminant  methods) in their use of the data, For example, generative

models typically scale poorly with input dimensionality  for fixed training sample size

and tend to be less robust to mismatches in terms of distributional assumptions about

the observed data [10],

4.2 Hybrid Models with an “Unknown” State

To alleviate the fact that discriminative models may not detect novelty, but that

generative models may have poor discriminative capabilities in many dimensions, we

propose a hybrid classifier which uses both a generative and discriminative classifier

in parallel. The model is based on the simple idea of adding an “m+ 1 th” state to the

model to cover ‘all other possible states” not accounted for by the known m states

and modifying the probabilistic updating equations appropriately.

Let the symbol w{l,,..,~} denote the event that the true system state is one of the

known states, and let p(u{l,...,~}[y) be the posterior probability that the data is from

the known state given the observed data y. Hence, one can estimate the true posterior—
probability of individual known states as

P(~ilY)  =  Pd(”ilYt u{l,...,m}  )P(u{l,m}l!J),!J),  1 S 2< ?n (8)— —

where pd(wi 1~, W{],...,m } ) is the posterior probability estimate of state z as provided

by a discriminative model (such as the neural network described earlier). Thus, the

posterior estimates of the hybrid classifier are conditioned on whether or not the data

comes from one of the m known classes.
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The calculation of p(w{l ,...,~} 1~) can be obtained as follows. Assume for the mo-

ment that p(y[w~+l  ), p(w~+l ), and p(ylw{l,...,~})  are all known. Thus we have by—
Bayes’ rule that

P(@{l,...,rn}ly)  = P(~l”{l,...,m})  P(~{l,m}),m})
P(~l”m+l)P(wm+l  ) + P(!Jlw{l,...,m})  XT P(”i) “

(9)

and of course

Since by definition p(w{l ,...,.,})  = 1 – p(~m+~), we must define a prior probabili ty

of being in an unknown state. This is based on the designer’s prior belief of how often

the system will be in this unknown state — a practical choice is that the system is

at least as likely to be in an unknown failure state as any of the known failure states.

The p(~lu{l,...,m}) term in Equation (9) is provided directly by the generative mod-

el, i.e., whereas the discriminative model provides direct estimates of p~(~i II, U{l,...,m}),

the generative model provides estimates of the data given the states — hence, the

notion of running a discriminative and generative model in parallel. The generative

model need not necessarily use the full dimensionality of the input space, particularly

if the dimensionality  is large. A mixture model of the form

P(!Jl”{l,...,m})  =  ~ f(~lwi)P(w:) (lo)
i=l

is a natural choice, where in turn, the individual ~(yl~i)  components in the mixture—
could be chosen as unimodal  parametric models (such as Gaussian), or mixture

models (thus giving a hierarchical mixture model overall), or nonparametric kernel

density estimates, The hierarchical mixture model provides a reasonable trade-off

between model flexibility and complexity in practice,

Finally, the density of the observable data given the unknown  state, p(~lwm+l ),

must be defined in Equation (9), This requires the use of non-informative 13ayesian

priors for p(ylum+l)  over a bounded space of feature values, i.e., the maximum en-—
tropy choice of priors which reflect the least amount of prior information. Typically

this requires that we have some knowledge of upper and lower bounds on the pos-

sible feature values — with no prior knowledge on the nature of unknown faults a

uniform density over this space is usually appropriate. Note that the stronger the

bounds which can be placed on the features, t}]e narrower the prior density, and the
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better the ability of the overall model to detect novelty. If we only have very weak

prior information (very wide bounds), this will translate into a weaker criterion for

accepting points which belong to the unknown category.

4.3 Hybrid Models within a HMM context

The extension of the hybrid model to a HMM is straightforward, The number of

states is now m + 1 instead of m, i.e., the ‘unknown n state is explicitly modelled

within the HMM. The necessary state-observable probabilities (as required for the

HMM recursion) are calculated directly from Equations (8) and (9), i.e., the par-

allel generative/discriminative models are combined to provide estimates of both

p(~il~(t)), 1 ~ i ~ m and p(w~+l  Iy(i)) at each time instant. The transition proba-—
bilities between the known and transient states must be consistent with our choice

of prior probability p(w~+l ), i.e., the relative likelihood of an unknown state. In

addition, the self-transition probability of the unknown state reflects our prior be-

lief concerning the typical duration of such states — in practice, multiple unknown

states with different self-transition probabilities could be used to represent a range of

possible conditions from short transient faults to longer-term “hard” failures.

5 Experimental Results on Detecting Novel S-
tates

5.1 Constructing Hybrid models in Practice

To test the hybrid model the following experiment was conducted using the same

data as described in Section 3. In the training phase of the model the training data

for one of the known states was omitted entirely, i.e., the model was trained on 3

states instead of 4. Then, using the approach of Section 4, a hybrid model to detect

unknown states was constructed in the following manner:

● A discriminative classifier (the same feedforward neural network as described

in Section 3) was trained using all 12 features to provide estimates of

pd(~il~,~{l,.,.,m}),  1 S ~ S 3.

● A generative model consisting of a hierarchical mixture model (Equation (10))

was fitted to the training data using only 3 features derived from the motor cur-
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rent signal; the two coefficients of a second-order autoregressive model (AR(2)),

#l andq$2,  and the standard deviation, a. Hence,  y= (@l, #z, a). These fea-

tures  were chosen empirically on the basis of their being the most informative

about changes in the system state — using all 12 features would not have been

practical given that only 75 data points were available for the fault states. The

individual mixture components were themselves a mixture of 3 Gaussian compo-

nents with diagonal covariance matrices — the mixture weights and component

parameters were estimated via the EM algorithm.

● The prior probabilities of the 3 known states and the unknown state were set

uniformly, i.e., to 0.25,

● A 4-state HMM was designed; 3 known states  plus 1 unknown state, all with

equal prior probability and, as before, with probabilities of 0.01 of changing to

any another state. k = 5 was again used as the backward recursion depth.

Finally, the prior density of the data given the unknown state, p(~[w~+l  ), was

defined as follows. First consider the AR parameters & and q!q. In accordance

with standard time series theory, if the estimated process (as represented by the

two coefficients) is to be stationary, then the coefficients must obey the following

restrictions [18]:

41++2 <1,

42–41  <1,

–1<~~<1. (11)

It will be assumed that the estimated coefficients are in fact stationary. Equation (11)

thus provides bounds on the possible parameter values. A uniform density is specified

over all such allowable values of #l and 42. Of course, this does not allow for the

fact that in practice (and in particular for fault conditions) there is no guarantee that

the estimated coefficients will obey these bounds. The following approach is adopted:

if the estimated coefficients lie outside the bounds of the stationary region then the

probability of the unknown state p(w~+l Iy) is set to 1.—
The third parameter, the standard deviation of the voltage from the Hall effect

sensor which measures motor current, is normally about 20mv under normal condi-

tions. Based on experience from observing the motor current signal under a variety
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of conditions it is estimated that under any fault condition the standard deviation

should not exceed 1 volt. Hence, in the absence of any other prior information, a

uniform density is placed on the standard deviation over this range O to 1 volt for a.

This density is assumed independent of the AR(2) coefficient density, i e., the overall

prior density is the product of the two.

5.2 Experimental Results

We conducted the experiment (of leaving a particular fault out of the training data

set) twice; first the noisy tachometer fault was omitted, then the amplifier fault.

Figure 5a shows the response of the discriminative model alone (the feedforward

neural network probability estimates coupled to a 3-state HMM) to the test data

which contains an ‘unknown” fault, namely a noisy tachometer. The figure shows

that the noisy tachometer fault is misclassified as a failed tachometer. Figure 5b

shows the response when the hybrid model is run on the same data. Although there

is some confusion between the unknown state and the failed tachometer state, the

model clearly identifies that there is an unknown state present, i.e., the probability

of an unknown state is usually close to 1 during the presence of the unknown noisy

tachometer fault. Interestingly enough, the model also picks up a possible unknown

transient which occurred during the simulation of the failed tachometer fault.

In the second experiment, the amplifier fault was removed from the training data

but was present in the test set. Figure 6a shows the response of the discriminative 3-

state HMM (no explicit model for unknown). Whereas in the previous experiment the

unknown fault condition was merely classified incorrectly as being a different fault,

here the unknown fault is almost completely missed, i.e., it is largely misclassified

as being normal. This is exactly the type of problem which can arise when using

discriminative models when the exhaustivity assumption is not met, namely, novel

states can go undetected simply because they happen to sit on the “normal” side of

the estimated decision boundaries. Figure 6b shows the response of the hybrid model

to the same data. Now, although the unknown fault is not detected in its entirety,

it is partially detected in the unknown category. As before, some of the tachometer

fault data is also classified as being of the unknown variety, perhaps indicating various

transients in the data.
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6 Discussion of Related Work

The initial idea of treating the online monitoring of dynamic systems within the

framework of a HMM appears to have been proposed independently by Heck and

McClennan [19] and Smyth and Mellstrom [20]. Heck and McClennan  [19] describe

the application of the HMM approach to monitoring tool wear, with a particular

application to drill-bit wear detection, In addition they propose the use of the HMM

to provide predictive estimates of time-to-failure, a particularly useful approach when

failures are of a costly and/or catastrophic nature, Ayanoglu  [21] describes the use

of HMM’s for channel error detection in communications networks, Coast et al. [22]

use HMM’s for online monitoring and classification of cardiac arrhythmia signals,

while Provan [23] also describes a novel application of essentially the same idea to the

problem of medical diagnosis and treatment of acute abdominal pain. None of this

work using hidden Markov monitoring dealt with the problem of detecting unknown

states.

Previous work on novelty detection (within the context of classification/discrimination)

has tended to focus on learning closed decision boundaries for the known classes

(e.g., Hellstrom  and Brinsley [24]) — this approach is not likely to scale up well as

the dimensionality  of the input space increases, and may not be feasible at all with

some classification models (such as neural network models with semi-global response

functions such as sigmoids). An alternative approach, proposed by Dubuisson and

Masson [25], is to use only a generative model in the model and thus detect outliers

via distance thresholds, e.g., the distance from the mean in a parametric model, or

the distance from the nearest training set point in near-neighbour  or kernel models.

The disadvantage of threshold-based methods lies in the selection of the thresholds

themselves; without some hypothesis for data from the unknown state there is no

principled way to choose such thresholds.

In contrast, the probabilistic model for detection of unknown states which we have

proposed in this paper, while requiring significant prior knowledge on the part of the

designer, is a more principled approach in that it makes quite explicit the various

assumptions which surround the novelty detection issue. It forces the system designer

to assign specific prior hypotheses to the prior density of the data conditioned on a

novel event, Hence, the problem is framed explicitly in terms of comparing specific
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# ,

hypotheses for known and unknown events.

7 Conclusion

In this paper the Markov monitoring approach has been extended to allow for de-

tection of system states which were unknown a pn”ori.  This has significant impact

for practical applications where novel events are far more likely than in a controlled

laboratory environment. The proposed model was tested on data from a real-world

fault detection application and clearly demonstrated its ability to detect previously

unknown states — conversely, the model which assumed that unknown faults had a

prior probability of zero either misclassified an unknown fault into another fault state

or did not detect that any fault was present.

A c k n o w l e d g e m e n t s

The author would like to thank Jeff Mellstrom for assistance in obtaining the ex-

perimental results. The idea of using both discriminative and generative classifiers

was originally suggested by Richard Lippmann. The research described in this paper

was performed at the Jet Propulsion Laboratory, California Institute of Technology,

under a contract with the National Aeronautics and Space Administration and was

supported in part by ARPA under grant number NOO014-92-J-l  WO.

References

1.

2.

3.

4.

E. C. Posner  and R. Stevens, “Deep Space communication — past, present and

future,” IEEE Communications hlagazine,  VOI.22,  no.5, 8-21, May 1984.

A. S. Willsky, ‘A survey of design methods for failure detection in dynamic

systems,’ Automaiica,  pp.601–611, 1976.

R. Isermann,  ‘Process fault detection based  on modeling and estimation meth-

ods — a survey,’ Autornatica,  VO1.20,  387-404, 1984.

P.M. Frank, ‘Fault diagnosis in dynamic systems using analytical and knowledge-

based redundancy — a survey and some new results,’ Automatic, VO1.26, no,3,

pp.459-474, 1990,

18



5.

60

7,

8.

9.

10.

11.

12.

13.

14.

150

L. R. Rabiner,  ‘A tutorial on hidden Markov models and selected applications

in speech recognition,’ F%c. 1EE13, VO1.77, no.2, pp.257–286, February 1989.

P. Smyth and J. Mellstrom,  ‘Fault diagnosis of antenna pointing systems using

hybrid neural networks and signal processing techniques,’ in Advances in Neural

Injorrnation  Processing Systems ~, J. E. Moody, S. J. Hanson, R. P. Lippmann

(eds.),  Morgan Kaufmann Publishers: San Mateo, CA, 1992, pp.667-674.

P. Smyth, ‘Hidden Markov models for fault detection in dynamic systems,’

Pattern Recognition, accepted for publication.

B. Silverman, Density Estimation jor Statistics  and Data Analysis, New York:

Chapman and Hall, 1986.

A. J. Izenmann,  ‘Recent developments in nonparametric density estimation,’ J.

Amer. Stat. Assoc., VO1.86, pp.205-224, March 1991.

J. A. Anderson, ‘Logistic discrimination,’ in Handbook of Statistics, Volume

2: Classification, Pattern Recognition, and Reduction of Dimensionality, P. R.

Krishnaiah  and L. N. Kana.1 (eds.),  North Holland, Amsterdam, pp,169-191,

1982.

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neuml

Computation, Addison-Wesley, Redwood City: CA, 1991,

R. A. Redner and H. F. Walker, ‘Mixture densities, maximum likelihood, and

the EM algorithm,’ SIAM Review, V01,26, no.2, pp. 195-239, April 1984.

E. Barnard and R. Cole, ‘A neural net training program based on conjugate-

gradient optimization,’ Oregon Graduate Centre  Technical Report No, CSE

89-014, Oregon, 1989.

M, J. D. Powell, ‘Restart procedures for the conjugate gradient met hod,’ Math-

ematical Programming, VOI.12, pp.241-254,  April 1977.

M, D. Richard and R. P. Lippmann, ‘Neural network classifiers estimate Bayesian

a posteriori probabilities, ‘ hTeural  Computation, 3(4), pp.461-483,  1992.

19



16, J. Miller, R. Goodman, and P. Smyth, ‘On loss functions which minimize to

conditional expected values and posterior probabilities,’ IEEE  Transactions on

Information Theoy, July 1993.

17. P. Smyth, ‘Probability density estimation and local basis function neural net-

works,’ in Computational Learning Theoy and Natural Learning Systems II, T.

Petsche, M. Kearns, S. Hanson, R. Rivest  (eds.),  Cambridge, hfA: MIT Press,

to appear, 1993,

18, G. E. P. Box and G. M. Jenkins, Time Series Analysis: Forecasting and Control,

San Francisco, CA: Hold en- Day, 1970.

19. L. P. Heck and J. H. McClennan,  ‘Mechanical system monitoring using Hid-

den Markov models,’ in Proceedings of the IEEE International Conference on

Acoustics, Speech and Signal Processing, IEEE Press, New York, pp. 1697-1700,

1991.

20. P. Smyth and J. Mellstrom, ‘Fault diagnosis of antenna pointing systems using

hybrid neural  networks and signal processing techniques,’ in Advances in Neural

lnjormation  Processing Systems ~, J. E. Moody, S. J. Hanson, R. P. Lippmann

(eds.),  Morgan Kaufmann Publishers: San Mateo, CA, 1992, pp.667-674.

21. E. Ayanoglu, ‘Robust and fast failure detection and prediction for fault tolerant

communication networks,” Electronics Letters, 28(10), pp.940-941,  1992.

22. D. A. Coast, R. M, Stern, G. G. Cane, S. A. Briller, ‘An approach to cardiac

arrhythmia analysis using hidden Markov models,’ IEEE  Trans. Biomedical

Engineering, VO1.37, no.9, pp.826-836,  1990.

23. G. M. Provan, ‘Modelling  the dynamics of diagnosis and treatment using tem-

poral influence diagrams, ‘ in Proceedings oj the Third Workshop on Diagnosis,

pp.97-106,  1992.

24. B. Hellstrom  and J, Brinsley,  ‘Characterization of network responses to known,

unknown and ambiguous inputs,’ in Neural Networks for Signal Processing III:

Proceedings of the 1993 IEEE-SP Workshop, C. A. Kamm, G. M. Kuhn, B.

20



Yoon, R. Chellappa,  S.Y. Kung (eds. ), IEEE Press, New York, pp.226-231,

1993.

25. B. Dubuisson  and M. Masson, ‘A statistical decision rule with incomplete knowl-

edge about the classes,’ Pattern  Recognition, VO1.26,  no.1, pp.155-165, 1993.

2]



Figure Captions for “Markov Monitoring with Unknown States”

● Figurel:  Adiagram representing the operation ofa3-state hidden Markov  model, The

observed data y is available at times t – 1, t,. . . . The dotted lines represent the possible

state transitions of the system between each time instant. The solid line represents one

possible state sequence; in this case, the system is in state WI at time t – 1, remains in

this state at time t, moves to state US at time i + 1 and on to state ti2 at time i + 2.

The inference problem is to infer the most likely states given only the observed data

7Jt – I), y(t),....

● Figure 2: A simplified diagram of the downlink between a spacecraft and mission

control at the Jet Propulsion Laboratory. There are three DSN ground stations at

remote locations in California, Spain, and Australia.

● Figure 3: Model responses on test data sequence without hidden Markov monitoring.

The horizontal axis represents time in minutes, the vertical axes represent the model’s

estimates of the 4 possible system states: (a) 3-component Gaussian (diagonal covari-

ance matrices) mixture model trained via EM algorithm, (b) single hidden layer (12

hidden units) feedforward neural network model,

● Figure 4: Model responses on test data sequence with hidden hfarkov monitoring, The

horizontal axis represents time in minutes, the vertical axes represent the model’s es-

timates of the 4 possible system states. The hidden Markov model used a ii = 0.97

and aij = 0.01, i # j. (a) 3-component Gaussian (diagonal covariance matrices) mix-

ture model trained via the EM algorithm, (b) single hidden layer (12 hidden units)

feedforward neural network model.

● Figure 5: Model responses on test data sequence with hidden Markov monitoring where

the tachometer noise has been omitted from the training data set. The horizontal axis

represents time in minutes, the vertical axes represent the model’s estimates of the

possible system states. The hidden Markov models used aii = 0.98 (3-state model)

or a:~ = 0.97 (4-state model) and a ij = 0.01, i # j: (a) 3-state (no unknown state)

single hidden layer (12 hidden units) feedforward neural network discriminative model

with HMM (b) 4-state (3 known plus unknown state) hybrid generative/discriminative

model with HMM, discriminative model as in (a), generative model is a 9-component

Gaussian (diagonal covariance matrices) hierarchical mixture model trained via the

EM algorithm.



● Figure 6: Model responses on test data sequence with hidden Markov monitoring where

the amplifier fault has been omitted from the training data set. The horizontal axis

represents time in minutes, the vertical axes represent the model’s estimates of the

possible system states. The hidden Markov models used aii = 0.98 (3-state model)

or ali = 0.97 (4-state model) and aij = 0.01, i # ~: (a) 3-state (no unknown state)

single hidden layer (12 hidden units) feedforward neural network discriminative model

with HMM (b) 4-state (3 known plus unknown state) hybrid generative/discriminative

model with HMM, discriminative model as in (a), generative model is a 9-component

Gaussian (diagonal covariance matrices) hierarchical mixture model trained via the

EM algorithm.
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